Giving a Presentation

15th January 2021

Robot Learning Lab

Albert-Ludwigs-Universität Freiburg

With Every Presentation...

...you present yourself and your work

Outline

- The slides
 - Content
 - Layout
- The presentation
- Questions

The Slides

- Typically done long before the presentation
- and long enough to practice
- They are used to better convey the message
- Their purpose is not to allow you to read off what you want to say

Choosing a Proper Title is Hard

- The title of a slide often says what is on the slide
- You actually can to better: Use the title to convey a message
- The title should better tell the message of the slide.
- Choosing a Proper Title is hard

The Structure of Scientific Presentations is often Similar

- 1. Introduction and Motivation
- 2. State of the Art
- 3. Our Approach
- 4. Results
- 5. Conclusions and Future Work

- This/such a slide is contained in many presentations
- Maybe it is better to leave it out if your presentation is short.

Introduction and Motivation

Describe

- the problem
- why it is relevant
- the open question
- in which way the approach you present gives an answer to this question

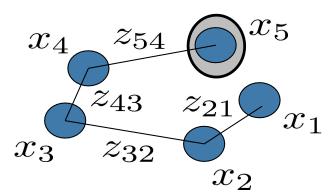
Why should people care about your work?

State of the Art

- Mention relevant approaches presented in the past.
- Tell in which way the approach presented in this paper goes beyond the previous ones.
- The art lies in finding the right balance when describing related work
- Say what the approaches do and what they solve (be friendly, make the authors happy!)
- Say in which way your approach is better (do not make the authors unhappy!)

The Approach

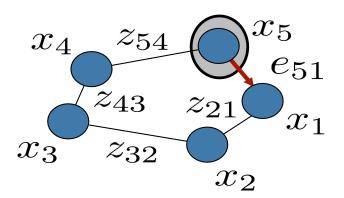
- This part of the presentation is not intended to demonstrate your skills
- It is intended to let the audience understand how your approach works
- Provide the audience with the technical details and the intuition
- Use graphics and/or examples to explain technical details


Example: Graph-based SLAM

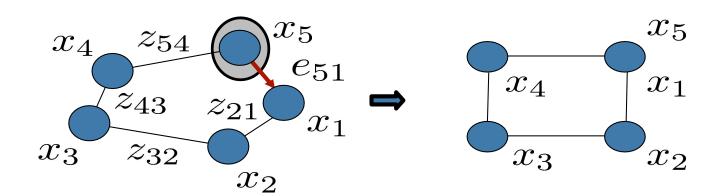
- Let $\mathcal{G}=(\mathbf{x},\mathbf{z})$ be a graph where $\mathbf{x}=\{x_1,\ldots,x_n\}$ is a set of poses and $\mathbf{z}=\{z_{ji}\}$ is a set of pairwise observations of poses j and i, where Ω_{ji} is the corresponding measurement uncertainty.
- Furthermore let e_{ji} be the erroge between the pairwise observations x_{ji} and the relative poses
- Goal: Find $\mathbf{x}^* = \operatorname*{argmin} \sum_{ji} e_{ji}^T \Omega_{ji} e_{ji}$

Maybe Better: Graphical Example

Given:


- Poses $\mathbf{x} = \{x_1, \dots, x_n\}$
- Pairwise observations: $\mathbf{z} = \{z_{ji}\}$
- Measurement uncertainty Ω_{ji}

Maybe Better: Graphical Example


Given:

- Additionally we observe that $x_5 = x_1$
- This introduces the error: e_{51}

Maybe Better: Graphical Example

- More generally, we have an error e_{ji} for every pairwise observation z_{ji} given the positions \mathbf{x} of the nodes
- Goal: Find $\mathbf{x}^* = \operatorname*{argmin}_{\mathbf{x}} \sum_{ji} e_{ji}^T \Omega_{ji} e_{ji}$

Algorithms are Hard to Explain

Algorithm 1 Coverage(S) 1: $C \leftarrow S$ //Set the current node to S $\mathcal{P}_{aux} \leftarrow C$ $\mathcal{P} \leftarrow \emptyset$ 4: while 1 $\forall n \in \mathcal{P}_{aux}, \ m \in \mathcal{N}, \ \|c_n - c_m\| < M_{\mathbf{R}} \cdot e_{\text{cell}}$ $\mathbf{visited}(m) = 1$ 6: $\forall n \in \mathcal{P}_{aux}, \ m \in \mathcal{N}, \ \|c_n - c_m\| < 2M_{\mathbf{R}} \cdot e_{\text{cell}}$ overlapped(m) = 1 $\mathcal{N}_C \leftarrow \{n \in \mathcal{N} \mid ||c_n - c_C||_{\infty} = (2M_R + 1) \cdot e_{\text{cell}}\}$ 7: and **overlapped**(n) = 0 and $q(n) < \infty$ 8: if $\mathcal{N}_C \neq \emptyset$ 9: find $M \in \mathcal{N}_C$ with minimal q 10: else 11: $\mathbf{D}^{*}(C)$ and stop at $\mathbf{visited}(M) = 0$ or $||c_M - c_o||_{\infty} = e_{\text{cell}}, \ o \in \mathcal{O} \text{ and } \exists n,$ $\mathbf{visited}(n) = 0, \|c_M - c_n\| < M_{\mathbf{R}} \cdot e_{\text{cell}}$ 12: if no such node M exists 13: return \mathcal{P} 14: end 15: end $\mathcal{P}_{aux} \leftarrow \mathcal{P}_{aux}(C, M)$ $C \leftarrow M$ //Set the new current node 17: 18: $\mathcal{P} \leftarrow \mathcal{P} \cup \mathcal{P}_{aux}$ 19: end

Better...

- Describe the idea
- Give examples to describe how it works
- Design the examples so that all (relevant) features of the algorithms can be explained
- Once you are done with the examples, the audience should have an idea how it works

The Results

- The results should back up your claims
- With them you demonstrate that your approach has the desired features.
- They should clearly demonstrate that the approach you present is better than previous ones.

The Conclusions and Future Work

- Again describe the contribution of this this paper
- A good first sentence starts with "We presented a novel approach to ..."
- Tell the key idea of the work
- Maybe talk about limitations that might lead to future work

Seminar Talks about Other People's Work

- You might add slides describing your opinion about the paper.
- Tell what you regard as positive aspects
- Tell which potential improvements you see
- What would you have done differently?

Text

- Use sans serif fonts instead of serif fonts
- Use
 - dark text on light background (easy to read)
 - light text on dark background (not so easy to read)

Left-aligned text is easier to read than centered text

Avoid putting too much onto one slide (avoid clutter)

Text

- Use sans serif fonts instead of serif fonts
- Use
 - dark text on light background (easy to read)
 - light text on dark background (not so easy to read)

Left-aligned text is easier to read than centered text

Avoid putting too much onto one slide (avoid clutter)

Text

- Use sans serif fonts instead of serif fonts
- Use
 - dark text on light background (easy to read)
 - light text on dark background (not so easy to read)

Left-aligned text is easier to read than centered text

Avoid putting too much onto one slide (avoid clutter)

Text Color

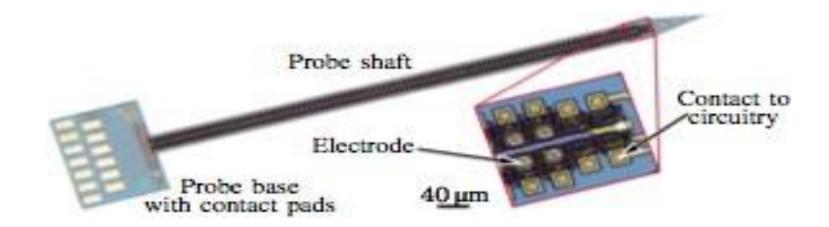
- Check readability
- Check readability
- Check readability
- Check readability
- Red and green are hard to distinguish for a large fraction of the population

Check readability, maybe ask others!

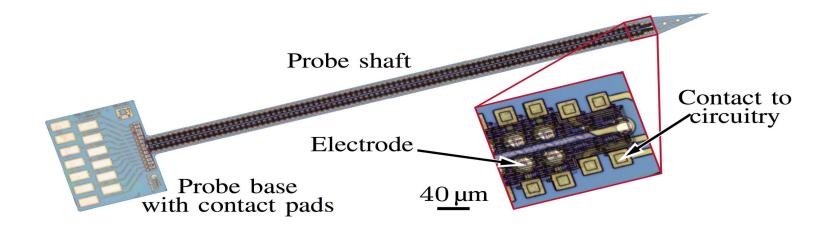
Text Size

- Make sure that everyone can read the text (32Pt)
- Make sure that everyone can read the text (28Pt)
- Make sure that everyone can read the text (24Pt)
- Make sure that everyone can read the text (20Pt)
- Make sure that everyone can read the text (18 Pt)
- Make sure that everyone can read the text (16 Pt)
- Make sure that everyone can read the text (14 Pt)
- Make sure that everyone can read the text (12 Pt)
- The caption should not be smaller than the text on the slide

Abbreviations

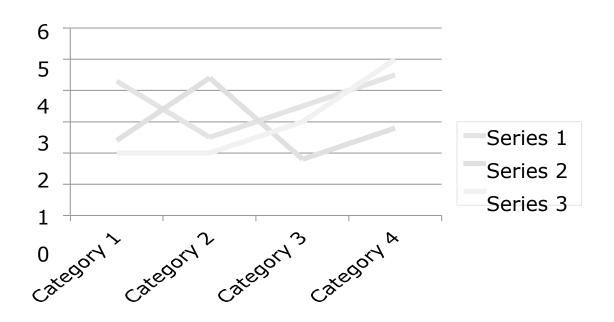

- Abbreviations reduce the length of the text
- They make you appear like an insider while they likely make other feel like outsiders

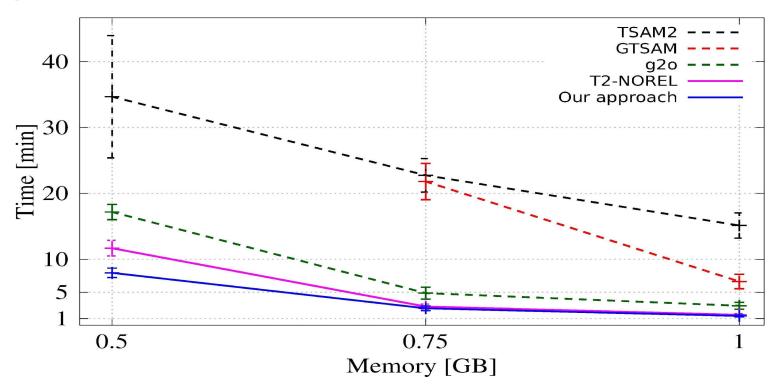
- Avoid abbreviations (unless they are very, very common)
- Especially avoid uncommon abbreviations in titles


Figures

- Prefer vector graphics over images
- When grabbing an image from the source paper, make sure you do this at the highest resolution
- Enlarge the picture as much as possible before grabbing it
- When you can see the individual pixels, think about redrawing the figure!
- To check, attach your computer to an LCD monitor and check the quality by going close to the screen.

A Low Resolution Figure


Higher Resolution is better!


Plots

- Use colors that can easily be distinguished
- Use patterns that can easily be distinguished
- Order the legend according to the functions
- Make them high resolution
- Create your own one if needed

Negative Example Plot

Properly use Line Styles, Colors and Alignments!

Animations

- Useful to explain content
- or to illustrate processes

- and not to entertain the audience
- Avoid line after line text-animations
- Often animations are even distracting
- Do not demonstrate that you know every feature of the presentation tool!

Line after Line Animations

Every technical presentation has the following outline:

- 1. Motivation
- 2. Outline of the talk
- 3. State of the art
- 4. The new method
- 5. Experimental results
- 6. Conclusions

The Motivation

- What is the problem?
- Why is it relevant?
- What has been done thus far?
- What is the key idea of the approach presented in the paper?
- In which way do the experiments demonstrate that it provides a better solution to the problem?
- Simply avoid custom animations!

Similar Case in LaTeX Beamer

- What is the problem?
- Why is it relevant?
- What has been done thus far?
- What is the key idea of the approach presented in the paper?
- In which way do the experiments demonstrate that it provides a better solution to the problem?

Similar Case in LaTeX Beamer

- What is the problem?
- Why is it relevant?
- What has been done thus far?
- What is the key idea of the approach presented in the paper?
- In which way do the experiments demonstrate that it provides a better solution to the problem?

Similar Case in LaTeX Beamer

- What is the problem?
- Why is it relevant?
- What has been done thus far?
- What is the key idea of the approach presented in the paper?
- In which way do the experiments demonstrate that it provides a better solution to the problem?

Similar Case in LaTeX Beamer

- What is the problem?
- Why is it relevant?
- What has been done thus far?
- What is the key idea of the approach presented in the paper?
- In which way do the experiments demonstrate that it provides a better solution to the problem?

Spell Checking

- Your computer can do spell checking for you: Use it!
- Always set the language of the slide to the language that you are using

Benutzen Sie die Rechtschreibprüfung! Benutzen Sie die Rechtschreibprüfung!

$\sum_{i=I}$ ypesëttimg Formulas

In-text:

• Equation Editor:

$$\sum_{i=1}^{n}$$

$$\frac{n*(n+1)}{2}$$

i=1

TeXPoint:

$$\sum_{i=1}^{n} i = \frac{n*(n+1)}{2}$$

Inline Equations

- Easy to type
- Always aligned with text
- Float with text

- Restricted
- Very few symbols available
- Hard to align elements (equation symbol)

Equation Editor

- Relatively easy
- Graphical interface
- High flexibility
- Nicer

- Each equation is an individual object
- The do not float with text
- Nice but not absolutely nice

TeXPoint

- Full LaTeX flexibility
- Equations can be pasted from LaTeX- sources
- The nicest equations

- Each equation is an individual object
- They do not float with text
- Harder to learn
- Text interface

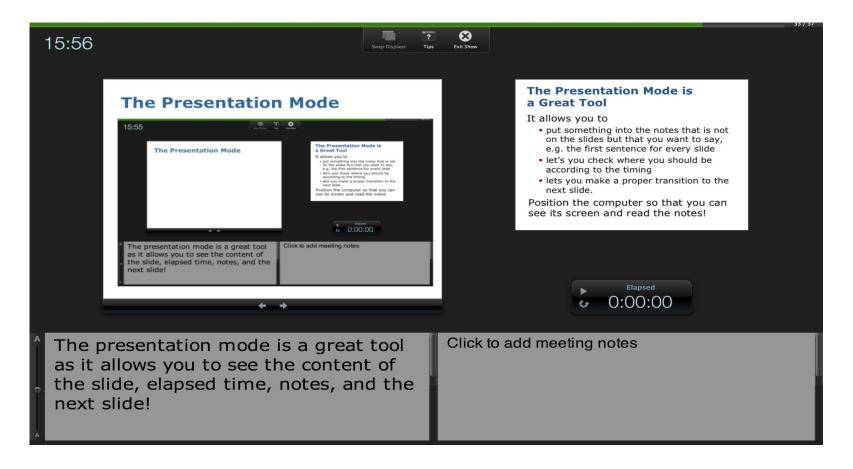
Important Aspects to Check

- Set the language of the slides to the language of the presentation
- Spell your slides
- Check whether videos run on a different computer
- and when Computer is attached to LCD Display
- Friendly video codecs are
 - MP4 with H.264 standard settings or
 - MS RLE encoding for animations

Use Consistent Colors & Shapes

- Think about the colors and shapes that you want and
- stick with them.

Your Presentation


- Plan it
- Practice it
- Time it
- Think about how to deal with interrupting questions
- Practice transitions between slides
- Keep in mind: This is your show.
- Optimize it!

YOUR CONFERENCE PRESENTATION HOW YOU PLANNED IT: NTRODUCE DESCRIBE OUTLINE OF TALK MOTIVATION APPLAUSE ENGAGING RESULTS /, Q&A START 15 MINUTES METHODOLOGY AND EXPERIMENT DESIGN CONCLUSIONS HOW IT GOES: REALIZE YOU ONLY HAVE 3 MINUTES LEFT. ANNOYING AUDIENCE TECHNICAL DIFFICULTIES CONNECTING YOUR LAPTOP. POWER THROUGH THE REST OF YOUR PREVIOUS SPEAKER RUNS MEMBER INTERRUPTS WITH SELF-AGGRANDIZING QUESTION. FORGET INTRODUCING YOURSELF. MOTIVA-LATE AND EATS 30 SLIDES. INTO YOUR TIME. 1 MINUTES -TION SPEND WAAAY TOO MUCH TIME DESCRIBING YOUR OUTLINE. AWKWARD SILENCE Q&A.

Connecting your Laptop

- Check if your laptop works before the talk
- Are the colors OK?
- Are the videos visible on both screens?
- Do not boot your computer in front of the audience (use suspend to RAM)
- Better do not close the lid before connecting your laptop
- Check the entire presentation (esp. videos) when you have to give it on a computer different from yours

The Presentation Mode

The Presentation Mode is a Great Tool

It allows you to

- put aspects you want to convey or an introductory sentence into the notes of each slide
- lets you check where you should be according to the timing
- lets you make a proper transition to the next slide.

Position the computer so that you can see its screen and read the notes!

Laser Pointer

- Might help you to point at things
- or to emphasize aspects
- Hold the laser pointer in both hands if the laser point jitters
- Not everything needs to be pointed at
- Do not point at the audience,
- Start and stop the laser properly
- Familiarize yourself with the buttons
- and the other features (timer)

Laser Pointer Gestures

Underline

Circle

Point at *

Speaking (1)

- Speak up to make sure that everyone can hear you.
- If there is a microphone, speak into it!
- Do not lower your voice simply because there is a microphone
- If you can hear your voice from the speakers, the audience does as well
- If you cannot hear it, the audience will probably also not be able to hear it (and you)

Speaking (2)

- Avoid dialect
- Avoid idioms
- Avoid repetitions (look for alternatives or synonyms if you discover it)
- Avoid hesitation vowels like "ahem", "uh", "well", "yes", "OK", ...

How to Move and Behave?

- Establish contact to the audience
- Do not solely focus the computer screen or the screen
- Do not look at the ground or into a corner
- Avoid siding (try to look at everyone)

Questions / Interruptions?

- Think positive!
- Questions are good and show that people are interested
- Try to repeat the question to make clear that you understood it properly
- If you cannot answer a question, be honest about it and do not say random words
- If answering would take too long or would go too far away from the talk, suggest to take the discussion offline
- Do not worry when someone falls asleep

Time Limits

- Test the duration of your presentation beforehand
- Keep a timer running

Virtual Presentations

- Check your camera & positioning beforehand: central, lightning
- Be aware of your background
- Decide if you prefer to sit or stand
- You won't see your audience. Remain confident about your presentation
- Be familiar with the software: how to share the (correct) screen, enter presentation mode
- If expect that you will need to drink, prepare a glass of water

Summary

- A talk is a unique opportunity to present yourself
- Prepare it carefully
- Practice it extensively
- There is no reason to be late with your presentation
- There is no reason not to be prepared

Thank you for your attention!

This slide appears in almost every talk but actually is superfluous.