universitätfreiburg

WS 25/26 Seminar Robot Learning

Akshay L Chandra

Robot Learning Lab

16 October 2025

Agenda

- I. Organization: Enrollment, important dates and evaluation.
- II. Robot Learning Lab: Our research interests and publications.
- III. Topics: Seminar Papers.
- ?. Questions.

Organization

Enrollment, important dates and evaluation criteria



Seminar

Objectives

- Learn to read and understand scientific literature.
- Familiarize with the State-of-the-Art (SOTA) in the field.
- Discover limitations, propose improvements and potential future work.
- Build knowledge from related work, prior and follow-ups.
- Improve **presentation** skills.
- Develop abilities for synthesis (diagram drawing, summarizing main ideas, ...).

TL;DR:

Show us that you have a **solid** grasp of your topic.

Enrollment Procedure

Select <u>3 papers</u> in decreasing order of preference.

Register for the seminar in HISinOne.

Students selected based on HISinONE Priority.

Students assigned papers based on their preferences

Fill in our Google Form

By **20.10.2025**

Please check the course website for more information:

https://rl.uni-freiburg.de/teaching/ws25/robotlearning/

Important Dates

Event	Date	Time
Lecture 1: Introduction *	16.10.2025	16:00
HISinOne Registration + Paper Selection	19.10.2025	
Place Allocation	23.10.2025	
Paper Assignment	24.10.2025	
Supervisor Meeting	-	
Lecture 2: How to Make a Presentation *	12.01.2026	14:00
Lecture 3: Block Seminar Presentations *	06.02.2026	9:00 - 17:00
Paper Summary Submission	20.02.2026	< 23:59

^{*} Mandatory in-person attendance

Evaluation Criteria

Evaluation	Due Date
Seminar Presentation	06.02.2026
Paper Summary	20.02.2026

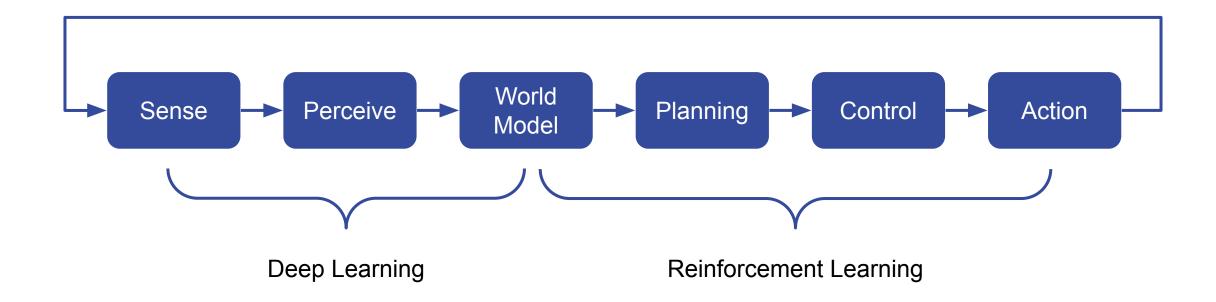
- Presentation: at most 20 min.
- Summary: at most 7 pages excluding bibliography and figures.
- Final Grade:
 - Presentation (slides & delivery) + Summary + Seminar Participation.

II.

Robot Learning Lab

Our research interests and publications

Autonomous Robotics



Can we **learn** certain parts of this pipeline?

Robot Learning

Learning ...

- ... models of robots, tasks or environments
- ... deep hierarchies/representations from sensor and motor representations to task representations
- ... plans and control policies
- ... methods for probabilistic inference from multi-modal data
- ... structured spatio-temporal representations, e.g. low-dim. embeddings of Movements

How can we ensure autonomous operation of embodied AI systems?

Research Areas

Perception

- Recognition
- Depth Estimation
- Motion Estimation

State Estimation

- Tracking & Prediction
- SLAM
- Registration

Motion Planning

- Hierarchical Learning
- Reinforcement Learning
- Learning from demonstration

Responsible Robotics

- Fairness
- Explainability & Privacy
- Practical Ethics

Mobile Manipulation

- Whole-Body Motion
- Long-Horizon Reasoning
- Planning for Sensing

Human-Robot Interaction

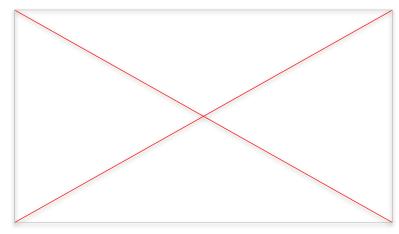
- Socially-Compliant Behavior
- Human-Robot Collaboration
- Behavior Adaptation & Safety

Learning Fundamentals

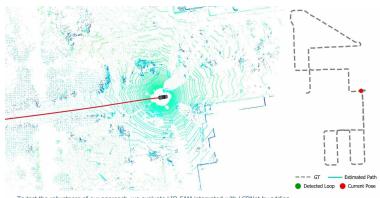
- Socially-Supervised Learning
- Continual & Interactive Learning
- Multimodal & Multitask Learning

Many Seminal Works

Scene Understanding

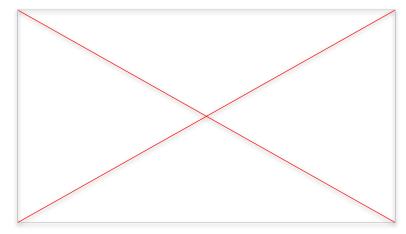


Motion Planning



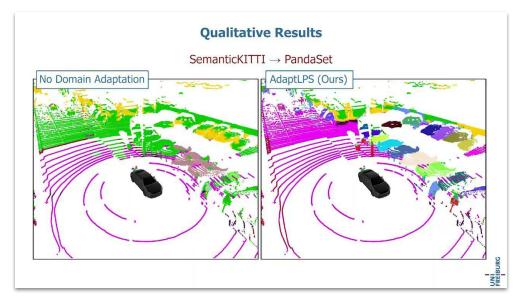
random noise to the odometry measurements

Simultaneous Localization and Mapping

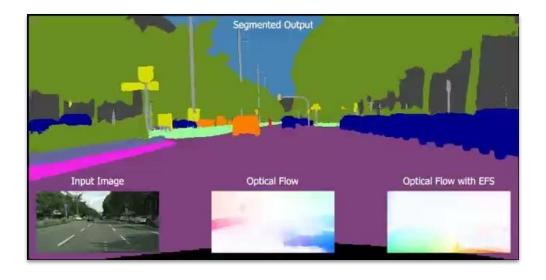


Learning from Demonstrations

Robotic Perception — Mobility



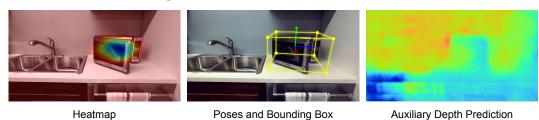
Unsupervised LiDAR Domain Adaptation Besic, Gosala, Cattaneo, Valada RA-L '22

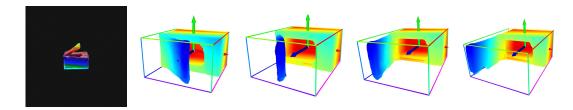


Semantic Motion Segmentation Vertens, Valada, Burgard ICRA '17

Robotic Perception — Manipulation

Single-Shot Reconstruction

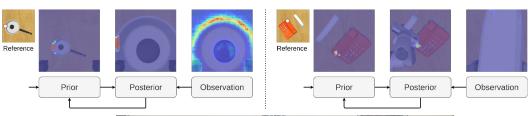




Category and Joint Agnostic Reconstruction of ARTiculated Objects

Heppert, et al CVPR '23

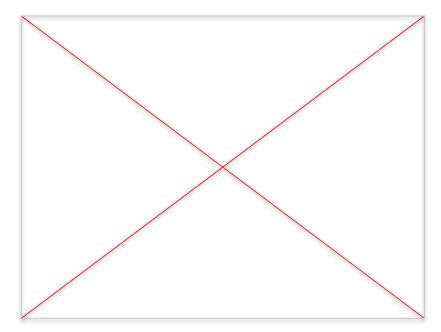
Learning scale-invariant compact representations for mobile manipulation



Bayesian Scene Keypoints for Deep Policy Learning in Robotic Manipulation

von Hartz, et al RA-L '23

Mapping and Localization

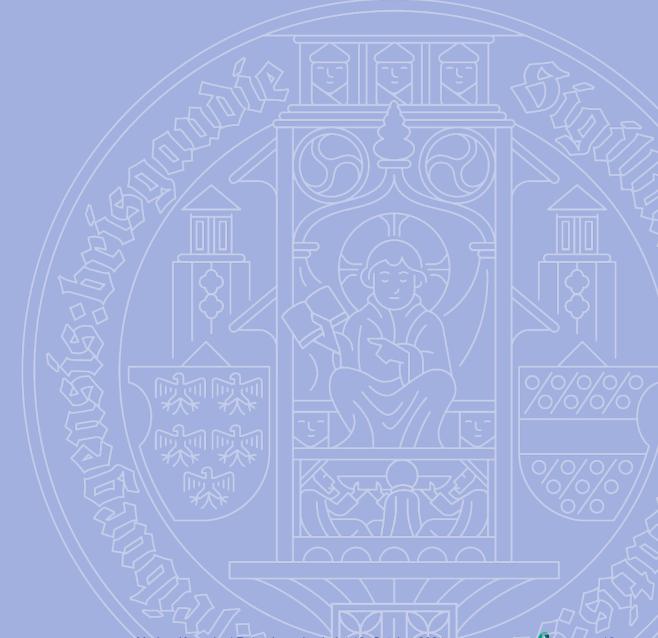


Continual SLAM Vödisch, Cattaneo, Burgard, Valada ISSR '22



Continual Depth Estimation and Segmentation Vödisch, Petek, Burgard, Valada RSS '23

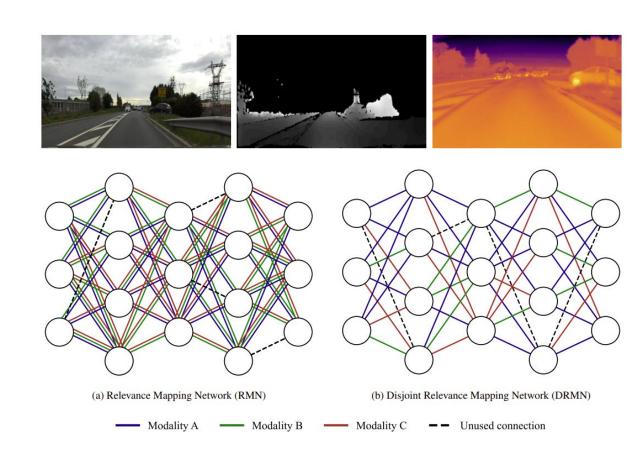
III. Topics Seminar Papers



Modality-Incremental Learning with Disjoint Relevance Mapping Networks for Image-based Semantic Segmentation

https://arxiv.org/abs/2411.17610

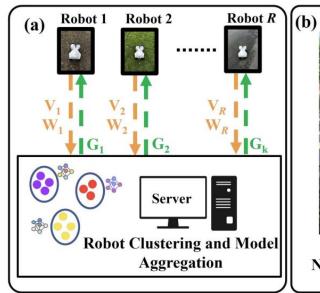
- In autonomous driving, deep learning now plays a crucial role in environment perception.
- More diverse sensors →more safety and robust perception
- This paper addresses the issue of continual learning with large domain shifts, e.g. different sensor modalities.
- They propose Relevance Mapping Networks to deal with catastrophic forgetting

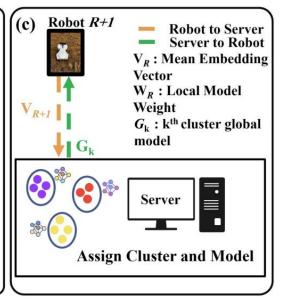


Fed-EC: Bandwidth-Efficient Clustering-Based Federated Learning for Autonomous Visual Robot Navigation

https://arxiv.org/abs/2411.04112

- This paper proposes a federated learning framework that is deployed with vision based autonomous robot navigation in diverse outdoor environments
- The server:
 - clusters the robots
 - learns an aggregated model which is then shared with the robots
- They report 23x communication reduction, better transferability to new clients.

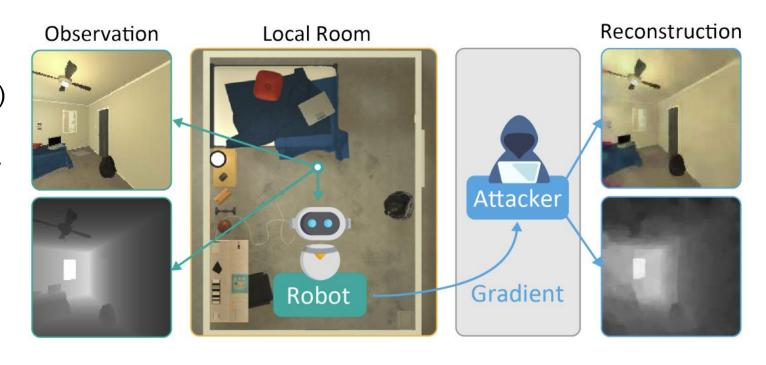




Privacy Risks in Reinforcement Learning for Household Robots

https://arxiv.org/abs/2306.09273

- This papers proposes an attack on the reinforcement learning training processes (value-based or gradient-based algorithms)
- They utilize gradient inversion to reconstruct states, actions and supervisory signals.
- Very relevant for federated learning techniques that solely utilize gradients computed on private user data to optimize models

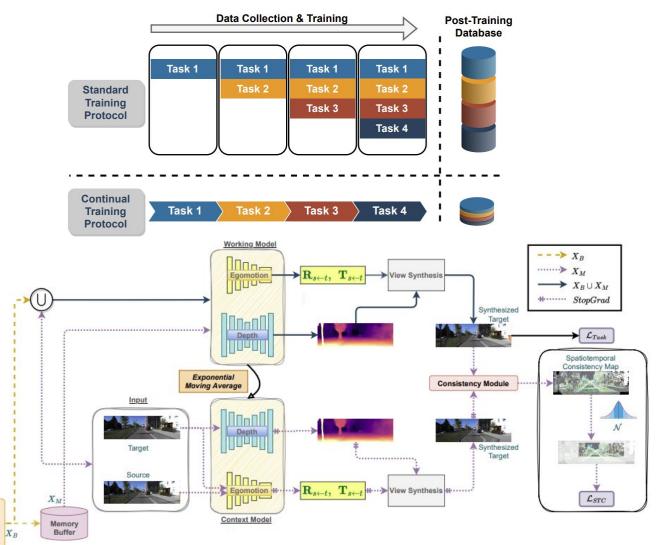


Continual Learning of Unsupervised Monocular Depth

from Videos

https://arxiv.org/abs/2311.02393

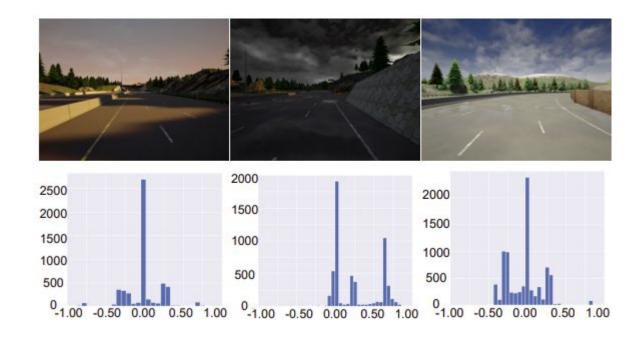
- One of the first works to address continual learning for depth estimation
- They propose a rehearsal-based dual-memory method, which utilizes spatio-temporal consistency for continual learning in depth estimation



Reducing Non-IID Effects in Federated Autonomous Driving with Contrastive Divergence Loss

https://arxiv.org/abs/2303.06305

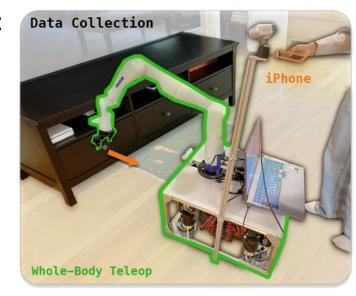
- Autonomous driving data is generally non-IID.
 - Significant distribution shift
 - Accumulation of errors
- This has many negative effects on the convergence of the learning process
- This paper proposes a "contrastive divergence" loss to mitigate these effects in a federated learning setting.

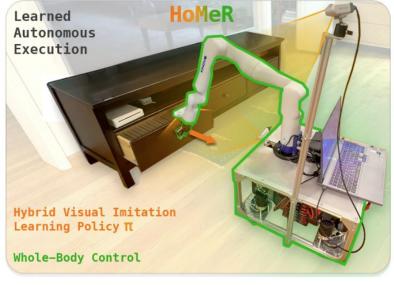


HOMER: Learning In-the-Wild Mobile Manipulation via Hybrid Imitation and Whole-Body Control

https://arxiv.org/abs/2506.01185

- HOMER which combines a hybrid IL agent with a fast, kinematics-based whole-body controller for sample-efficient, generalizable mobile manipulation in-the-wild
 - Data Collection (Whole-Body Teleop)
 - Data Annotation
 - Novel Policy Architecture

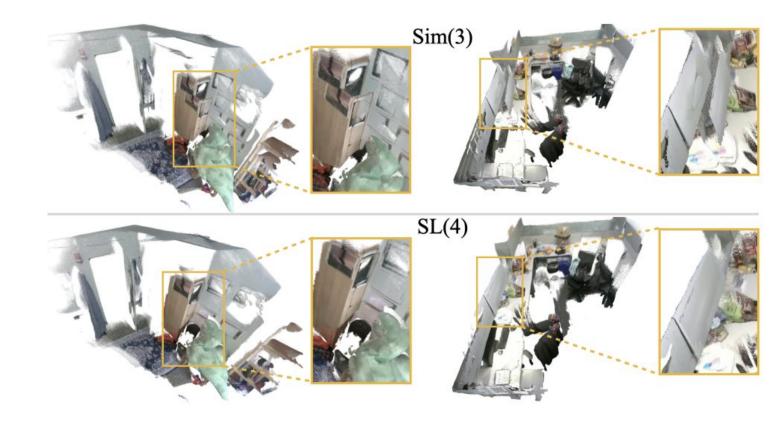




VGGT-SLAM: Dense RGB SLAM Optimized on the SL(4) Manifold

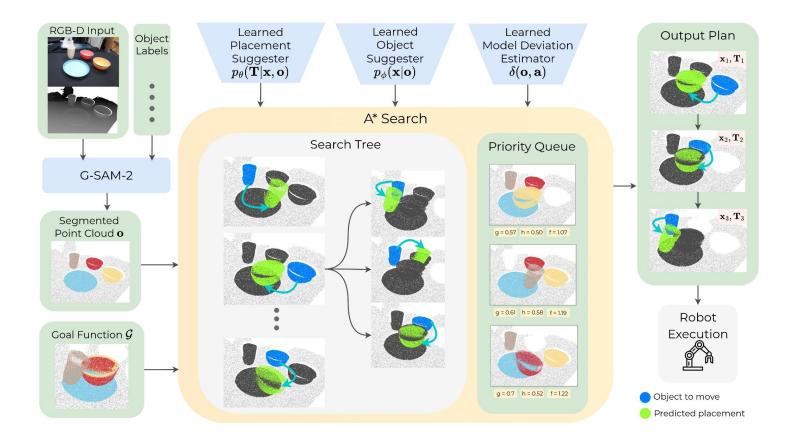
https://arxiv.org/abs/2505.12549

- VGGT-SLAM is a dense RGB SLAM system
 - Requires uncalibrated cameras with no assumptions on the camera motion
 - No assumptions on scene structure
 - Optimising over the SL(4) manifold
 - Better than VGGT!



Planning from Point Clouds over Continuous Actions for Multi-object Rearrangement

https://arxiv.org/abs/2509.04645



ScrewSplat: An End-to-End Method for Articulated Object Recognition

https://arxiv.org/abs/2508.02146

Steerable Scene Generation with Post Training and Inference-Time Search

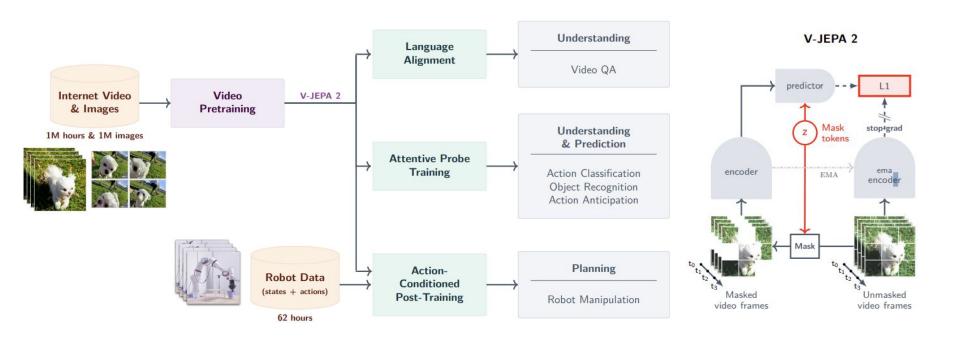
https://arxiv.org/abs/2505.04831

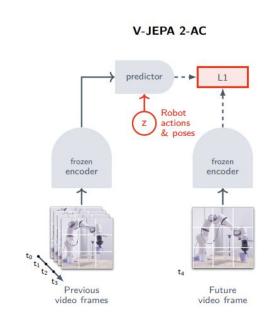
- This work generates large-scale scene data using procedural models that approximate realistic environments for robotic manipulation
 - Trains a Unified Diffusion-based Generative Model
 - Goal-directed scene synthesis that respects physical feasibility



V-JEPA 2: Self-Supervised Video Models Enable Understanding, Prediction and Planning

https://arxiv.org/abs/2506.09985

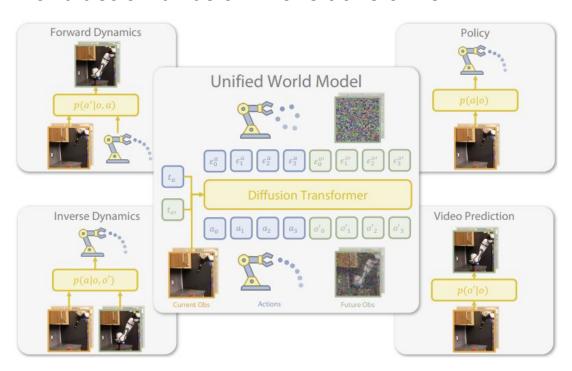




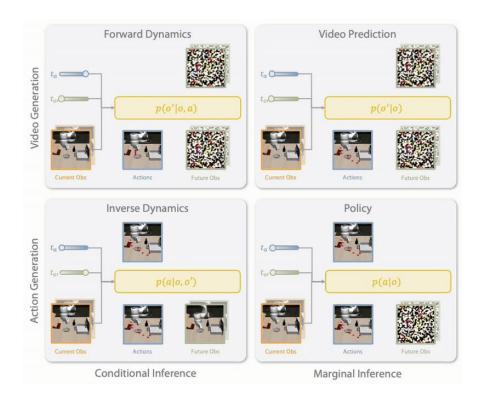
Unified World Models: Coupling Video and Action Diffusion for Pretraining on Large Robotic Datasets

https://arxiv.org/abs/2504.02792

 Unified World Models (UWM) combine video and action diffusion in one transformer



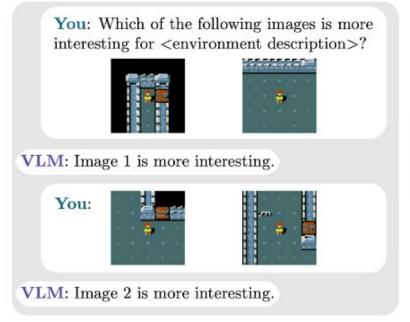
Flexible Inference

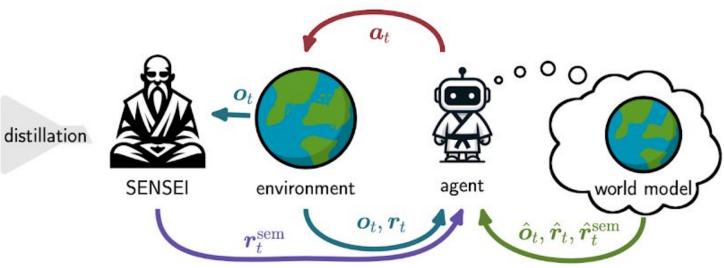


SENSEI: Semantic Exploration Guided by Foundation Models to Learn Versatile World Models

https://arxiv.org/abs/2503.01584

• A framework for guiding the **intrinsically motivated exploration** of model-based agents through foundation models without assuming access to expert data, high-level actions, or perfect environment captions.

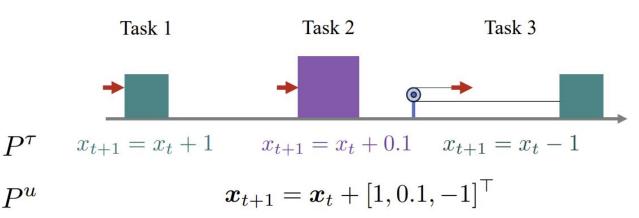




Continual Reinforcement Learning by Planning with Online World Models

https://arxiv.org/abs/2507.09177

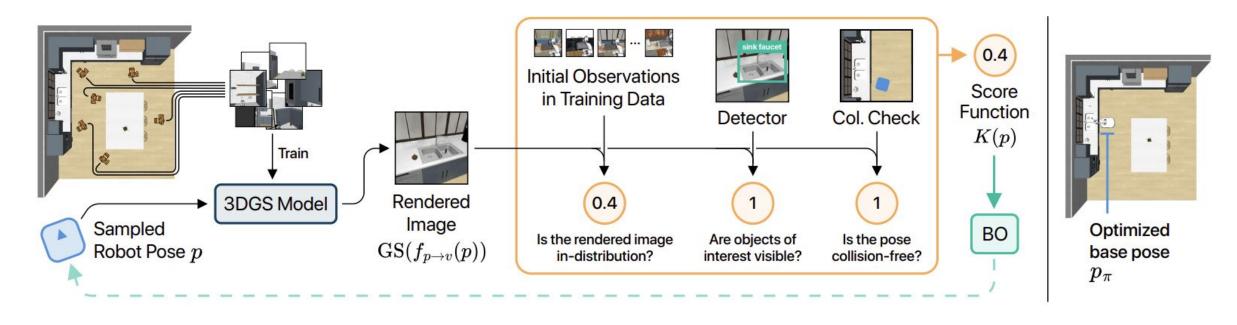
- Continual reinforcement learning refers to a naturalistic setting where an agent needs to endlessly evolve, by trial and error.
- However, catastrophic forgetting is a known well-documented issue.
- This papers plans with online world models to mitigate the problem.
 - Key insight: a unified dynamics model
 - Provides theoretical guarantees of "no-regret" under mild assumptions



Mobi-π: Mobilizing Your Robot Learning Policy

https://arxiv.org/abs/2505.23692

- This work introduces policy mobilization
- Mobi- π finds the optimal robot pose that leads to an in-distribution viewpoint for executing a policy π
- Achieves task success without the need to collect additional demonstrations

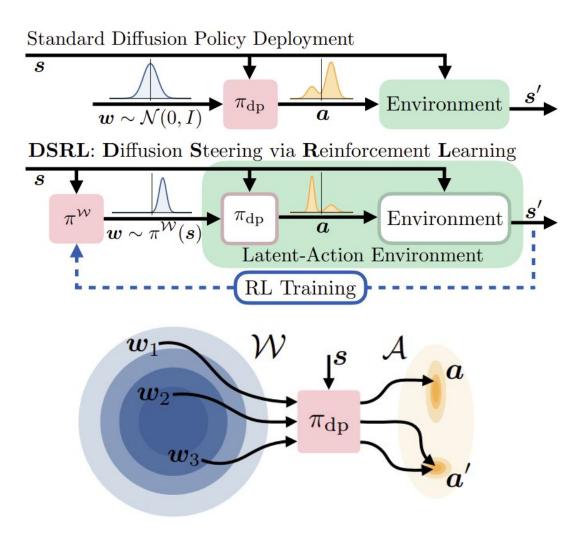


Steering Your Diffusion Policy with Latent Space

Reinforcement Learning

https://arxiv.org/abs/2506.15799

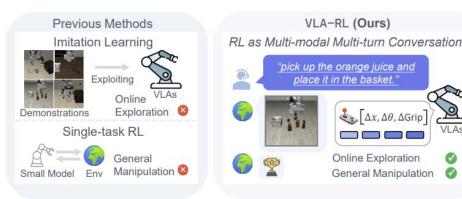
- Diffusion Policies are great!
 - Multi-modality, stable training and more.
- However, imitation learners have problems.
- To improve them beyond BC:
 - · Use Reinforcement Learning.
 - [This Work] Simply steer them in the latent space!
- Highly sample efficient.
- Only requires black-box access to the diffusion policy.

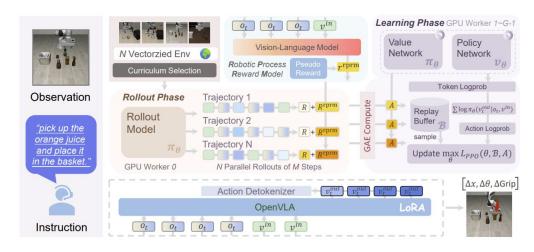


VLA-RL: Towards Masterful and General Robotic Manipulation with Scalable Reinforcement Learning

https://arxiv.org/abs/2505.18719

- VLAs are great!
- At the end of the day, they are merely imitation learners.
- To improve:
 - Use Reinforcement Learning
 - With Sparse Rewards
- This work: Explores a wide variety of recipes for fine-tuning VLAs with RL
 - Trajectory generation
 - Value functions
 - LoRA of Action-head

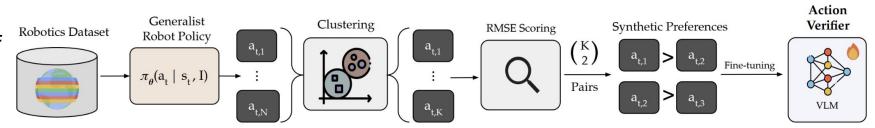




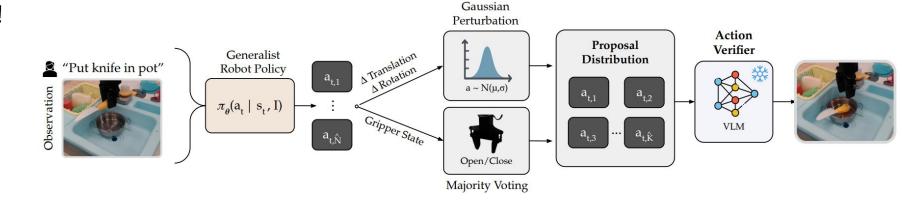
RoboMonkey: Scaling Test-Time Sampling and Verification for Vision-Language-Action Models

https://arxiv.org/abs/2506.17811

- VLAs are great!
- Can we squeeze the best out of them before fine-tuning them?



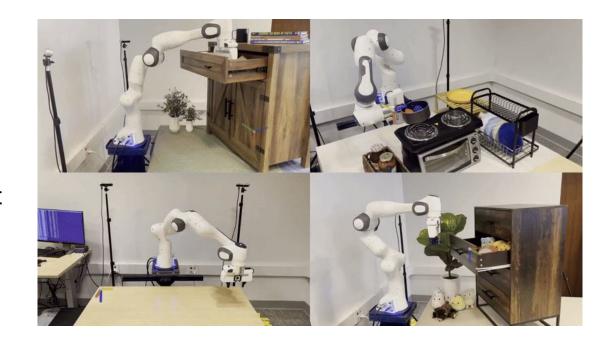
This work: Test-Time Scaling!



Deep Reactive Policy: Learning Reactive Manipulator Motion Planning for Dynamic Environments

https://arxiv.org/abs/2509.06953

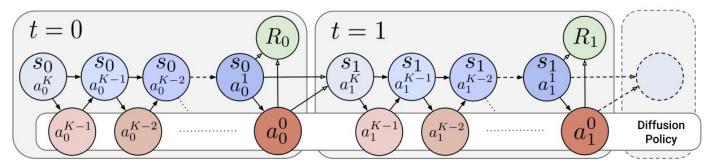
- Motion planning is great!
 - We have really fast IK solvers now!
 - But they cannot generalise!
- This work: Neural motion policies that can generalise in complex or dynamic settings
 - A transformer trained on **10 million** generated expert trajectories across diverse simulation scenarios!



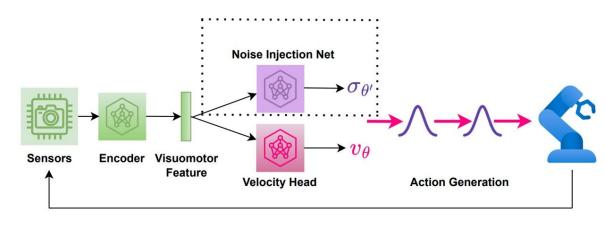
ReinFlow: Fine-tuning Flow Matching Policy with Online Reinforcement Learning

https://arxiv.org/abs/2505.22094

4.1 A Two-Layer "Diffusion Policy MDP"



Source: Ren et al., DPPO, 2025



Questions?

Announcement

Open Positions

• We have multiple MSc Project and Thesis topics related to many directions of robot learning.

Please check our website for information on how to apply:

https://rl.uni-freiburg.de/open-positions

Questions or Comments

Akshay L Chandra
Robot Learning Lab
chandra@cs.uni-freiburg.de

