Markus Käppeler
| PhD Student | ||
| Postal address: |
Albert-Ludwigs-Universität Freiburg |
|
| Office: | 080-00-008 | |
| Email: |
kaeppelm@cs.uni-freiburg.de |
|
About me
- 01/2024 - current: Ph.D. Student in the Robot Learning Lab, University of Freiburg
- 04/2020 - 12/2023: M.Sc. in Computer Science, University of Freiburg
- 10/2016 - 02/2020: B.Sc. in Applied Computer Science, Konstanz University of Applied Sciences
Research Interests
- Robot Perception
- Map-Based Perception
- Foundation Models for Autonomous Driving
- Self-Supervised and Label-Efficient Learning
Current Research Projects
- AI-based System Architectures for Autonomous Driving
Teaching
- TA, FreiCAR - Practical Autonomous Driving, University of Freiburg, WS2025
- TA, Deep Learning Lab, University of Freiburg, SS2025
- TA, Advanced Deep Learning, University of Freiburg, SS2025
- TA, Robot Learning Seminar, University of Freiburg, WS2024/25
- TA, Advanced Deep Learning, University of Freiburg, SS2024
Publications
2025
-
Markus Käppeler,
Özgün Çiçek,
Daniele Cattaneo,
Claudius Gläser,
Yakov Miron,
Abhinav Valada,
Bridging Perspectives: Foundation Model Guided BEV Maps for 3D Object Detection and Tracking
arXiv preprint arXiv:2510.10287, 2025.
Paper Video Website BibTeX -
Niclas Vödisch*,
Kürsat Petek*,
Markus Käppeler*,
Abhinav Valada
Wolfram Burgard,
A Good Foundation is Worth Many Labels: Label-Efficient Panoptic Segmentation
IEEE Automation and Robotics Letters (RA-L), vol. 10, no. 1, pp. 216-223, 2025.
Paper IEEE Xplore Video Website BibTeX
2024
-
Markus Käppeler*,
Kürsat Petek*,
Niclas Vödisch*,
Wolfram Burgard,
Abhinav Valada
SPINO: Few-Shot Panoptic Segmentation With Foundation Models
IEEE International Conference on Robotics and Automation (ICRA), 2024.,
Paper IEEE Xplore Video Website BibTeX
